Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro.
نویسندگان
چکیده
Studies were conducted to evaluate the potential mechanism-based inactivation of recombinant and human liver microsomal CYP2C8 by clinically used drugs. Several tricyclic antidepressants, calcium channel blockers, monoamine oxidase inhibitors, and various other known CYP3A4 inhibitors exhibited greater inhibition of CYP2C8 (paclitaxel 6alpha-hydroxylation) following preincubation, consistent with mechanism-based inactivation. Inactivation of recombinant CYP2C8 by phenelzine, amiodarone, verapamil, nortriptyline, fluoxetine, and isoniazid was of the pseudo-first order type and was characterized by respective inactivation kinetic constants (KI and kinact) of 1.2 microM and 0.243 min(-1), 1.5 microM and 0.079 min(-1), 17.5 microM and 0.065 min(-1), 49.9 microM and 0.036 min(-1), 294 microM and 0.083 min(-1), and 374 microM and 0.042 min(-1). Spectral scanning of recombinant CYP2C8 demonstrated the formation of metabolite-intermediate complexes with verapamil, nortriptyline, fluoxetine, and isoniazid, but not amiodarone. In contrast, inactivation by phenelzine resulted from heme destruction by free radicals. Studies with human liver microsomes (HLMs) revealed that nortriptyline, verapamil, and fluoxetine were not mechanism-based inactivators (MBIs) of CYP2C8. Simultaneous inactivation of CYP2C8 and CYP3A4 (paclitaxel 3'-phenyl-hydroxylation) was observed using amiodarone, isoniazid, and phenelzine with the efficiency of inactivation greater for the CYP3A4 pathway. With the exception of phenelzine, glutathione and superoxide dismutase failed to protect CYP2C8 (recombinant and HLMs) or CYP3A4 from inactivation by MBIs. However, the alternate CYP2C8 substrate, torsemide, prevented CYP2C8 inactivation in all cases. These data are consistent with mechanism-based inactivation of CYP2C8 by a range of commonly prescribed drugs, several of which have been implicated in clinically important drug-drug interactions.
منابع مشابه
Selective inhibition of human cytochrome P4502C8 by montelukast.
The leukotriene receptor antagonist montelukast was examined for its inhibition of the human drug-metabolizing enzyme cytochrome P4502C8 (CYP2C8). Montelukast was demonstrated to be a potent inhibitor of CYP2C8-catalyzed amodiaquine N-deethylase, rosiglitazone N-demethylase, and paclitaxel 6alpha-hydroxylase in human liver microsomes. Inhibition was also observed when the reaction was catalyzed...
متن کاملAccelerated Communication Effect of Common Organic Solvents on in Vitro Cytochrome P450- Mediated Metabolic Activities in Human Liver Microsomes
In this study, we report the effect of methanol, dimethyl sulfoxide (DMSO), and acetonitrile on the cytochrome P450 (P450)-mediated metabolism of several substrates in human liver microsomes: phenacetin O-deethylation for P4501A2, coumarin 7-hydroxylation for P4502A6, tolbutamide hydroxylation for P4502C8/2C9, S-mephenytoin 4*-hydroxylation for P4502C19, dextromethorphan Odemethylation for P450...
متن کاملEffect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes.
In this study, we report the effect of methanol, dimethyl sulfoxide (DMSO), and acetonitrile on the cytochrome P450 (P450)-mediated metabolism of several substrates in human liver microsomes: phenacetin O-deethylation for P4501A2, coumarin 7-hydroxylation for P4502A6, tolbutamide hydroxylation for P4502C8/2C9, S-mephenytoin 4'-hydroxylation for P4502C19, dextromethorphan O-demethylation for P45...
متن کاملMechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions.
The ability to use vitro inactivation kinetic parameters in scaling to in vivo drug-drug interactions (DDIs) for mechanism-based inactivators of human cytochrome P450 (P450) enzymes was examined using eight human P450-selective marker activities in pooled human liver microsomes. These data were combined with other parameters (systemic C(max), estimated hepatic inlet C(max), fraction unbound, in...
متن کاملAn Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 311 3 شماره
صفحات -
تاریخ انتشار 2004